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Motivation

Due to rising gas prices and the increasing
dependency on natural gas imports, the production
of substitute natural gas (SNG) is becoming a
relevant option within the European Union. For the
generation of SNG from biomass or lignite similar
process steps are required. Especially steam
gasification is favorable for synthesis processes
since it produces a hydrogen rich syngas, which is
preferable  for  synthesis  processes.  For
decentralized applications a process line with low
complexity is mandatory. The Heatpipe Reformer
technology offers such a process [1]. Figure 1
shows the lab-scale (5 kW) coal-to-SNG process
chain at the chair of energy process engineering at
the University of Erlangen-Nuremberg, which is
based on the Heatpipe Reformer technology.
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Fig. 1: Lab-scale SNG process chain (5 kW) at EVT

Allothermal gasification

The lab scale gasifier produces a hydrogen rich
pressurized syngas, which is nearly Nitrogen-free.
Due to fluidized bed gasification at approx. 830°C
the syngas still contains a high concentration of tar
components and traces of sulfur species. Typical
gas compositions are shown in Figure 2.
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Fig. 2: Raw syngas composition for lignite and biomass
steam gasification (Teg= 830°C, p = 5.2 bar,, S/F = 5)

Apart from the different C/H/O-ratio of these two
fuel types it showed that lignite was mixed very well
with the fluidized bed material. The normed
biomass pellets however formed a layer of lighter
coke pellets on top of the fluidized bed. Thus the
heat transfer from the heated bed material to the
biomass pellets was not comparable to the
gasification of lignite particles.
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Fig. 3: SPE analysis of the raw syngas from lignite and biomass (Tgz = 835°C, p =5.2 bar,, 0 = 5)

Figure 3 shows the measured tar components for
lignite and biomass derived syngas.

Integrated syngas cleaning

As proposed by Benson and Field sour gas
components can be removed from the syngas
stream at moderate temperatures with a relatively
low energy demand. Using a 30 wt-% K,CO,
solution for the scrubbing process CO, and H,S are

Conclusion

With further adaptions the Benfield promises to be a
suitable syngas cleaning process for decentralized
applications. It represents a valid process for bulk
sour gas removal and is capable of removing
heavier tar components simultaneously. Combined
with guard beds for further desulfurization it could
be applied for synthesis processes.
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Fig. 4: Lignite syngas composition and sulfur concentration after gasifier and scrubber (T =835°C, p = 5.2 bar,, SIF = 5)

removed from the raw syngas in the absorber
column at 5 bar, in the bench scale. The loaded
solvent is let down in the desorber column. Steam
from the reboiler enhances the desorption of the
sour gases. Light tar components like BTX are
hardly removed. While only reaching about 65 %
removal efficiency with the lab scale tests stands,
the removal efficiency for H,S and CS, exceeded
the expected efficiencies. While more than 90 %
removal efficiency for H,S could be measured,
thiophene was not affected by the scrubbing
process. For an application for synthesis processes
with sulfur sensitive catalysts guard beds for the
removal of organic sulfur components are
necessary. Off-gas treatment for the capture of H,S
is primarily important for the application with lignite
or other high sulfur solid fuel types.
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