

Doctoral Colloquium Bioenergy 01. Oct. 2019

SOFC single cells fed with wood gas: the influence of tar contaminants on cell performance

Yixing Li Supervisor: Prof. Dr. -Ing. Jürgen Karl

1. Motivation

- Research background
- Theoretical basics
- Aim of the project

2. Numerical modeling of tar conversion on SOFCs

- Kinetic approaches
- SOFC Fuel Cell With Unresolved Electrolyte Model
- **3.** Experimental setup and results
 - Single cell test station and cell housing
 - Effect of naphthalene on SOFC at open circuit condition
- **4.** Numerical setup and results
 - Comparison between different kinetic approaches
 - Comparison between open and closed conditions

Research background – biomass integrated gasification-SOFC system

Absorbens (Ca-basiert) **Motivation** Precoatpartikel- und Filter H₂S freies Synthesegas 200-400°C Vergaser Synthesegas-ZnO-Filter kühler Koks'- und teerhaltiger setup Filterkuchen **Biomass** Gas cleaning Gasification Conversion SOFC as an alternative to gas engine in CHP systems: High electrical efficiencies Power Higher hydrocarbons could be utilized

Heat

→ simpler and cheaper gas cleaning systems

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG

TECHNISCHE FAKULTÄT

Fundamentals of SOFC – Solid Oxide Fuel Cell

High-temperature operation (700-1000°C)

- Required to maximise the O²⁻ conductivity of the electrolyte
- Using various fuels (CO, CO₂, hydrocarbon fuels)
- Direct internal reforming of hydrocarbons

Schematic of PEM^[2]

Conversion of tars on SOFC anodes

• Tar – from the pyrolysis step of the gasification process of biomass

Motivation Numerical Modeling

"Higher-chain hydrocarbons that condense on cooling a biogenic gas" "All organic components present in the biogenic product gas except gaseous hydrocarbons C1 to C6" "All organic contaminants with a molecular weight larger than benzene"

Formation of biomass tars [3]

Conversion of tars on SOFC anodes

Interaction between tar and SOFC anodes:

Motivation Numerical

Folie 6

- + Direct electrochemical oxidation $C_{x}H_{y} + \left(2x + \frac{y}{2}\right)O^{2-} \rightarrow xCO_{2} + \frac{y}{2}H_{2}O + (y + 4x)e^{-}$
- + Steam reforming (SR) with water gas shift reaction (WGS) $C_x H_y + x H_2 O \leftrightarrow x CO + \left(x + \frac{y}{2}\right) H_2$

 $CO + H_2O \leftrightarrow H_2 + CO_2$

+ Dry reforming

$$C_x H_y + x C O_2 \leftrightarrow 2x C O + \frac{y}{2} H_2$$

- Carbon formation ightarrow Degradation

$$C_x H_y \leftrightarrow 2C + \frac{y}{2} H_2$$

Tolerance level of tar in the producer gas for SOFC: tens to few hundred ppmv

Impacts of tar on SOFC vary with:

- Anode materials
- Operating conditions
- Steam to carbon (S/C) ratio
- Temperature
- Current density
- Interaction with other tars

Further research required:

- Better understanding of fates of tars on SOFC anodes
- Suitable operating conditions for long term operation

Motivation

Purpose of the project

- Investigate the impact of tar model on the performance of SOFC and conversion of tar at different temperatures
- Investigate the interaction between hydrocarbons (e.g. Naphthalene, methane)
- Determinate the temperature-dependent permissible fuel utilization of representative hydrocarbons under load
- Establish the kinetic approaches of steam reforming of tars in CFD model
- Integrate the kinetic approaches into SOFC model

	Brennstoffausnutzung ("fuel utilization)
teerhaltiges —	Anoden-
Synthesegas	Abgas

- 1. Motivation
 - Research background
 - Theoretical basics
 - Aim of the project

2. Numerical modeling of tar conversion on SOFCs

- Kinetic approaches
- SOFC Fuel Cell With Unresolved Electrolyte Model
- 3. Experimental setup and results
 - Single cell test station and cell housing
 - Effect of naphthalene on SOFC at open circuit condition
- **4.** Numerical setup and results
 - Comparison between different kinetic approaches
 - Comparison between open and closed conditions

Kinetic approaches of catalyzed tar reforming - reaction mechanism

Tar conversion mechanism on SOFC anodes [4]

- 1. Hydrocarbons adsorbed on the nickel sites $\rightarrow C_x H_v^*$, C* and H*
- 2. Steam and carbon dioxide adsorbs on the ceramic support \rightarrow H^{*}, HO^{*} and O^{*}
- 3. The active species react to CO and H₂
- 4. The gaseous molecules desorb from the active sites

Kinetic approaches of catalyzed tar reforming – reaction kinetics

Naphthalene (C ₁₀ H ₈) as e				ole				
Motivation								
Numerical Modeling		One lump model: tar disappears by several simultanous reactions						
Exp	erimental	Apparent tar conversion rate by single first-order kinetic						
setup and results Numerical setup		Rate constant [mol s ⁻¹ m ⁻² ba			stant <i>k</i> n ⁻² bar] Note			
and	d results		800°C	900°C		Apparent kinetia peremetera		
Conclusion		$r = k \cdot p_{C_{10}H_8}$	0.11	0.33±0.08				
		 Power law type: 				SA PARA		
	Rate equation $r = A \cdot exp(-\frac{E_A}{R \cdot T}) \cdot c_{m, C_{10}H_8}$		A	<i>E_A</i> [J/kmol]		Note		
			977.78	5.8·10 ⁷	$C_{10}H_8 + 4H_2O \rightarrow C_6H_6 + 4CO + 5H_6$ Nickel catalyzed steam reforming			
$r = A \cdot exp(-\frac{E_A}{R \cdot T}) \cdot c_{C_{10}H_8}^{0.2} \cdot c_{H_2}^{0.3}$		4.3·10 ¹³	3.32·10 ⁸		Nickel catalyzed decomposition			

Folie 10

Kinetic approaches of catalyzed tar reforming - reaction kinetics

Motivation	• $C_{10}H_8$ is more strongly absorbed on the nickel catalyst $\rightarrow r$ proportional to occupancy of the adsorption sites					
Numerical Modeling						
Experimental setup and result Numerical setup and results	 LHHW (Langmuir-Hinschelwood-Hougen-Watson) type for heterogeneous reactions 					geneous
Conclusion	Rate equation	Parameters				Note
	$r = \frac{A \cdot \exp(-\frac{E_A}{R \cdot T}) \cdot c_{C_{10}H_8}}{C}$	Α	<i>E_A</i> [J/kmol]	K ₀ [m³/mol]	С [K]	Nickel catalyzed
	$1 + K_0 \cdot \exp(\frac{C}{T}) \cdot c_{C_{10}H_8}$	1.4·10 ⁶	1.49·10 ⁸	1.5·10 ⁻³	1.18·10 ⁴	conversion
	$k' \cdot p_{C_{10}H_8}$		k'	К′ [1/Ра]		Nickel catalyzed steam reforming at lower temperature and elevated pressure
	$V = \frac{1}{1 + K' \cdot p_{C_{10}H_8}}$	9.42·10 ⁻⁶ (649°C) 1.20·10 ⁻⁵ (700°C)		0.042 (649°C) 0.0165 (700°C)		

Schematic of a SOFC [5]

The model simulates:

- The fluid flow, heat transfer, and the mass transfer in the flow channels and in the porous electrodes
- The transport of the current and and the potential field in the porous electrodes and in the solid conducting regions
- The electrochemical reactions at the electrolyte interfaces

Details of SOFC Fuel Cell With Unresolved Electrolyte Model

- 1. Motivation
 - Research background
 - Theoretical basics
 - Aim of the project
- 2. Numerical modeling of tar conversion on SOFCs
 - Kinetic approaches
 - SOFC Fuel Cell With Unresolved Electrolyte Model
- 3. Experimental setup and results
 - Single cell test station and cell housing
 - Effect of naphthalene on SOFC at open circuit condition
- **4.** Numerical setup and results
 - Comparison between different kinetic approaches
 - Comparison between open and closed conditions

TECHNISCHE FAKULTÄT

Experimental Setup – Gas supply station

Experimental Setup – Furnace and ceramic housing for fuel cell

Up to 1000°C

Stamp

Cathode flow channels

Gold meshes Fuel cell Nickel meshes

Anode flow channels

Open circuit voltage in different temperatures

- Naphthalene has a negative effect on voltage of SOFC at lower temperature
- Negetive effects could be recovered once naphthalene is removed
- Probable reasons for oscilation of voltage:
- Unstability of water humidifier and tar
- Possible condense of naphthalene in the

Comparison with theoretical Nernst voltage

- A full reforming of Naphthalene could lead to a voltage increase of 4 mV theoretically
- Naphthalene conbribute more to voltage at higher temperature
- Naphthalene was not reformed completely
- 30-40 mV difference to theoretical Nernst voltage due to gas leaking

- 1. Motivation
 - Research background
 - Theoretical basics
 - Aim of the project
- 2. Numerical modeling of tar conversion on SOFCs
 - Kinetic approaches
 - SOFC Fuel Cell With Unresolved Electrolyte Model
- 3. Experimental setup and results
 - Single cell test station and cell housing
 - Effect of naphthalene on SOFC at open circuit condition
- **4.** Numerical setup and results
 - Comparison between different kinetic approaches
 - Comparison between open and closed conditions

Numerical model description and setups

Simplification:

One channel for fuel gas / air flow

DER IRG JÄT

Department Chemie- und Bioingenieurwesen (CBI) • Lehrstuhl für E

[°C]

- The resulting ocv of two different kinetic types only varies in couple mVs
- Using LHHW type to simulate the closed circuit condition

Flow rate [ml/min]	600			
Coo composition	H_2	N ₂	H ₂ O	C ₁₀ H ₈
Gas composition	35%	35%	30%	5g/Nm ³
Temperature [°C]	850			
Kinetic approach LHHW type			!	

• Further validation required

- 1. Motivation
 - Research background
 - Theoretical basics
 - Aim of the project
- 2. Numerical modeling of tar conversion on SOFCs
 - Kinetic approaches
 - SOFC Fuel Cell With Unresolved Electrolyte Model
- 3. Experimental setup and results
 - Single cell test station and cell housing
 - Effect of naphthalene on SOFC at open circuit condition
- **4.** Numerical setup and results
 - Comparison between different kinetic approaches
 - Comparison between open and closed conditions

Conclusion

Numerical Modeling

setup and results

Numerical setup and results

Conclusion

- 1. Preliminary work of investigating the effect of naphthalene as model tar on SOFC has been done
- Steam reforming of naphthalene contributes to an increase of ocv at higher temperatures (>800°C)
- The LHHW type of kinetic approach is more plausible to represent the fate of naphthalene on SOFC anodes
- The electrochemical reaction overweights the naphthalene steam reforming at closed circuit condition

2. Further study needed to:

- Investigate the conversion of naphthalene on SOFC
- Validate the model

Thanks for attention!

References

[1] M. Hauth, Detection of biomass tar using an SOFC

[2] https://zh.wikipedia.org/wiki/File:Solid_oxide_fuel_cell_protonic.svg

[3] Panagiotis Mitsakis, Online analysis of the tar content of biomass gasification producer gas

[4] T. Herrmann, M. Dillig, M. Hauth, and J. Karl, "Conversion of tars on solid oxide fuel cell anodes and its

impact on voltages and current densities," Energy Sci. Eng., vol. 5, no. 4, pp. 194–207, 2017.

[5] ANSYS Inc. ANSYS FLUENT fuel cell modules manual. Canonsburg, PA. 2012

Nernst voltage

$$U_N = \frac{\dot{n}_{fuel} \cdot \Delta_r G_{(T,p)}}{I} = \frac{\dot{n}_{fuel} \cdot \Delta_r G_{(T,p)}}{\dot{n}_{el} \cdot F} = -\frac{\Delta_r G_{(T,p)}}{z \cdot F}$$
$$= -\frac{\Delta_r G_{(T)}}{z \cdot F} - \frac{R \cdot T \cdot \ln Q}{z \cdot F} = -\frac{\Delta_r G_{(T)}}{z \cdot F} - \frac{R \cdot T}{z \cdot F} \cdot \ln(\frac{p_{H_2O} \cdot P_0^{1/2}}{p_{H_2} \cdot p_{O_{2,cathode}}^{1/2}})$$

When all gas components are in equilibrium \rightarrow $U_N = \frac{R \cdot T}{z_{O_2} \cdot F} \ln(\frac{p_{O_2,cathode}}{p_{O_2,anode}})$

ohmic loss in the solid conducting regions

$$i = i_{0eff} \cdot \left[e^{\frac{\alpha_a n \eta_{act} F}{RT}} - e^{-\frac{\alpha_c n \eta_{act} F}{RT}} \right]$$

Material Properties

Electrochemical properties			
anode exchange current density	1500 A m ²		
cathode exchange current density	512 A m ²		

Electrical properties			
Anode conductivity	3.33·10 ⁵ (ohm m) ⁻¹		
Cathode conductivity	7937 (ohm m) ⁻¹		
Current collector conductivity	1.5·10 ⁷ (ohm m) ⁻¹		
Anode contact resistance	1.10 ⁻⁷ ohm m ²		
Cathode contact resistance	1.10 ⁻⁸ ohm m ²		
Electrolyte resistivity	0.1 ohm m		

Material properties for gas mixture			
Density	incompressible ideal gas		
Specific heat capacity	mixing law		
thermal conductivity	ideal gas mixing law		
viscosity	ideal gas mixing law		
thermal diffusion coefficient	kinetic theory		

Material properties				
Anode				
Density	6200 kg m ⁻³			
Specific heat capacity	650 J kg ⁻¹ K ⁻¹			
Thermal conductivity	10 W m ⁻¹ K ⁻¹			
Porosity	0.45			
Tortuosity	4.5			
Cathode				
Density	6000 kg m ⁻³			
Specific heat capacity	900 J kg ⁻¹ K ⁻¹			
Thermal conductivity	11 W m ⁻¹ K ⁻¹			
Porosity	0.35			
Tortuosity	4.5			
Anode-cc				
Density	8900 kg m ⁻³			
Specific heat capacity	446 kg ⁻¹ K ⁻¹			
Thermal conductivity	91 W m ⁻¹ K ⁻¹			
Porosity	0.4			
Tortuosity	1.5			
Cathode-cc				
Density	21200 kg m ⁻³			
Specific heat capacity	140 kg ⁻¹ K ⁻¹			
Thermal conductivity	72 W m ⁻¹ K ⁻¹			
Porosity	0.856			
Tortuosity	1.5			