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CO2 emissions from integrated steelworks

Motivation • Energy and carbon rich by-product gases emerge process-related

• Thermodynamic optimum for the consumption of reducing agent is already reached 

(~498 kgC/thot metal; theoretical minimum: 414 kgC/thot metal)
(1)

• Nowadays used thermally internally

• Do not cover the entire energy demand  additional fossil fuels necessary

1) www.eurofer.org

2) A review of thermochemical processes and technologies to use steelworks off-gases, W. Uribe-Soto et al., Renewable and Sustainable Energy Reviews 74 (2017), pp. 809-823

3) A. Hasanbeigi, 2017, https://www.globalefficiencyintel.com/new-blog/2017/nfographic-steel-industry-energy-emissions
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• 27 – 30 % of the total industrial CO2 emissions originate 

from steel works(2,3)

• This equals 5 – 6 % of the total anthropogenic CO2

emissions(2,3)

• Focus of i³upgrade: 

Reduction of the CO2 impact of the integrated steel 

works through hydrogen-intensified syntheses
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Project objective i³upgrade (1)

i³upgrade

• Aim: Integration of renewable energies into the steelmaking process and thereby 

reduction of the CO2 impact of integrated steel works

• No major changes to the steelmaking process itself

• Integration of dynamic syntheses (methane, methanol) into an integrated steel works in 

combination with (renewable) hydrogen
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Project objective i³upgrade (2)
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• Intelligent process control strategy for dynamic operation with integrated dispatcher tool

• Approach with three control levels, from technical to economic leveli³upgrade
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• Term: 1st June 2018 to 30th November 2021; 42 months

• Total budget: 3.3 MM €

• Project administration: European Commission

• Funding: Research Fund for Coal and Steel (RFCS) 

(Grant Agreement Nr. 800659)

• Consortium: eight European partners

• Coordinator: FAU Erlangen-Nürnberg

i³upgrade

Consortium of i³upgrade
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[vol.-%](4) N2 CO2 CO CH4 H2 CnHm

COG 3.8 3.2 4.6 21.4 48.9 1.9

BFG 51.0 21.0 23.0 - 4.5 -

BOFG / CG 15.5 17.2 60.9 0.1 4.3 -

• 3 process steps with energy and carbon rich by-product gases

- Production of coke in coking plant coke oven gas (COG); max. 65 000 mN³/h

- Production of pig iron in blast furnace blast furnace gas (BFG); max. 800 000 mN³/h

- Production of steel in converter converter gas (BOFG / CG); max. 75 000 mN³/h

• BFG and BOFG contain high shares of carbonaceous species

•  can serve as carbon sources for hydrogen-intensified syntheses

By-product gases from the steel industry

(4) Unweighted mean values: R. Remus et al., Best Available Techniques (BAT) Reference Document for Iron and Steel Production, 2013.

Fundamentals
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• Reaction system containing CO and CO2 methanation and water-gas-shift reaction

• Formation of solid carbon possible (Boudouard equation)

𝐶𝑂 + 3 𝐻2 ↔ 𝐶𝐻4 + 𝐻2𝑂 ΔHR
0 = −206 kJ/mol

𝐶𝑂2 + 4 𝐻2 ↔ 𝐶𝐻4 + 2 𝐻2𝑂 ΔHR
0 = −164 kJ/mol

𝐶𝑂 + 𝐻2𝑂 ↔ 𝐶𝑂2 + 𝐻2 ΔHR
0 = −41 kJ/mol

𝐶𝑂2 + 𝐶 ↔ 2 𝐶𝑂 ΔHR
0 = +173 kJ/mol

Methanation – Reaction system and main challenge
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Experimental

• Minimizing the radial heat conductance length in fixed-bed (limiting factor causing hot-spots)

• Alternating reaction zones and heat sinks

• Heat pipes for reactor cooling

Catalytic 

reaction zone

Reactant 

pre-heating

Experimental setup – Structured fixed-bed reactor

• Block of stainless steel with drillings for 

 9 reaction channels filled with commercial 

catalyst

 16 drillings for water heat pipes for heat 

dissipation

 12 pre-heating channels

 Gas inlet, outlet and redirection

• Electrical heating especially for start-up by heating cartridges

• Cooling of heat pipe condenser zones by compressed air
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Heat dissipation with heat pipes

capillary structure

vapor flow

liquid flow in 

capillary structureheat supply

heat removal
closed container (e.g. pipe)

Figure source: Neubert, M., Hauser, A., Pourhossein, B., Dillig, M., & Karl, J. (2018). Experimental evaluation of a heat pipe cooled structured reactor as part of a 

two-stage catalytic methanation process in power-to-gas applications. Applied energy, 229, 289-298.

• Passive component for heat dissipation

• Transport of high power densities over long distances with low temperature difference

• Principle: Transmission of the enthalpy of vaporization between the heat source and the 

heat sink in a closed two-phase system

• Liquid backflow usually driven by capillary forces

Fundamentals
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Experimental

Test rig and performed experiments

• Two stage methanation concept

• Intermediate water sequestration

• Pressures up to 5 bar

• Commercial Ni/Al2O3 catalyst with high 

Ni loading (~ 50 wt.-%)

• Gas analyser for permanent gases

Test rig

Performed experiments

Steady-state methanation of BFG and BOFG 

with different

• Syngas powers / volume flow rates

• Stoichiometric ratios

Dynamic methanation of BFG and BOFG 

by step attempts 

• Up to ± 20 % in syngas power / volume flow rate

• Over- to sub-stoichiometric regime
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Temperature control with heat pipes

positioning of measurement

automated TC 

in thermowell

Axial temperature profiles of 

the structured reactor for 

different steady-state syngas 

powers (synthetic BOFG, 

σH2 = 1.04, p = 4 bar)• Maximum temperature can be limited below the catalyst limit

• Tmax ~150 K lower than expectable adiabatic synthesis temperature

• Dynamic adaption of cooling power to the different operating points necessary

expected temperature 

profile for adiabatic 

reactor

increase of syngas power

increase of cooling capacity
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Experimental

Product gas composition of BOFG methanation

Gas compositions after the 1st

and 2nd methanation stage for 

different steady-state syngas 

powers (synthetic BOFG, 

σH2 = 1.04, p = 4 bar)

• Full COx conversion after two-stage process with intermediate H2O sequestration

• Constant product gas quality after two-stage process over a wide syngas power range

• Significant amount of N2 (~31 vol.-%) in the product gas
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Yield and conversion of dynamic BFG methanation 

Hydrogen conversion and 

methane yield after the 1st and 

2nd methanation stage for 

different steady-state syngas 

powers (ye/rd/bk) and dynamic 

experiments (bu) (synthetic 

BFG, σH2 = 1.04, p = 4 bar)

X𝐻2 =
 n𝐻2,0 −  n𝐻2

 n𝐻2,0

Y𝐶𝐻4,𝐶𝑂𝑥 =
 n𝐶𝐻4 −  n𝐶𝐻4,0

 n𝐶𝑂2 ,0 +  n𝐶𝑂,0

hydrogen conversion

methane yield 

• Full methane yield after two-stage methanation, XH2 ≈ 95 % (over-stoichiometric methanation)

• Slight shift of conversion from 1st to 2nd stage; kinetic limitation assumed

• Dynamic experiments: no influence of step width and cycle time on YCH4,COx and XH2
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Temperature response during dynamic BFG methanation 

Timely resolved temperature 

profiles (structured reactor) for 

jumps in syngas power by 

1.6 kW in 5 min cycles 

(σH2 = 1.04, p = 4 bar, 

 Vcool = 85 Nl/min)

• Prompt and significant jumps of the hot spot temperature (~30 K) for jumps in syngas power by 1.6 kW

• Mean temperature level (represented by heat pipe working temperature) shows sluggish response

 Short-term fluctuations in syngas power require no adaption of cooling capacity
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Experimental

Gas quality of product gases from BFG and BOFG methanation

Classification of product gas 

quality from BFG / BOFG 

methanation as measured and 

calculated N2 free (limits 

according to DVGW G260)

Calculated N2 free gas compositions

• Some operating points would reach H gas quality

• Influence of H2 dilution increases

Measured gas compositions

• Good match of Ws/Hs ratio  

• Not injectable to gas grid, high share of N2
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Conclusion

Conclusion

Thank you for your attention!

• Aim i³upgrade: Integration of renewable energies into the steelmaking process and 

thereby reduction of the CO2 impact of integrated steel works

• Dynamic H2 intensified methanation with steelworks’ by-product gases as carbon source

• Results from steady-state and dynamic experiments

• Heat pipe cooled structured reactor is suitable for advanced temperature control

• Constant product gas quality over a wide syngas power range (after two-stage 

process with intermediate H2O sequestration)

• Dynamic experiments: 

 No influence of step width and cycle time on YCH4,COx and XH2

 Prompt temperature response at hot spot

 Sluggish response of mean temperature, dampening character of the reactor

• Gas quality not sufficient for grid injection because of high shares of N2


