

TECHNISCHE FAKULTÄT

International Conference on Polygeneration Strategies, 18th/19th November 2019, Vienna

Dynamic methanation of by-product gases from the steel industry in the scope of the

project i³upgrade

Alexander Hauser, M. Sc. Maximilian Weitzer, M. Sc. Stephan Gunsch, M. Sc. Dipl.-Ing. Michael Neubert Prof. Dr.-Ing. Jürgen Karl

Chair of Energy Process Engineering (EVT) Friedrich-Alexander-University Erlangen-Nürnberg (FAU) Fürther Str. 244f, 90429 Nürnberg Phone: +49 911 5302 9029 Fax: +49 911 5302 9030 Email: alexander.hauser@fau.de

Commission

Research Fund for Coal & Stee

Friedrich-Alexander-University Erlangen-Nürnberg • Chair of Energy Process Engineering • Prof. Dr.-Ing. Jürgen Karl

www.evt.tf.fau.de • www.i3upgrade.eu

Outline

TECHNISCHE FAKULTÄT

- Motivation \succ
- The project i³upgrade
 - Aim of the project
 - Consortium
- **Fundamentals** \geq
 - Methanation \geq
 - By-product gases from the steel industry
- Experimental setup and results
 - Reactor concept and methanation test rig \geq
 - Experimental results from the methanation of steel work's by-product gases
- Conclusion

Motivation

CO₂ emissions from integrated steelworks

- Energy and carbon rich by-product gases emerge process-related
 - Thermodynamic optimum for the consumption of reducing agent is already reached (~498 kg_C/t_{hot metal}; theoretical minimum: 414 kg_C/t_{hot metal})⁽¹⁾
 - Nowadays used thermally internally
 - Do not cover the entire energy demand \rightarrow additional fossil fuels necessary

- 27 30 % of the total industrial CO₂ emissions originate from steel works^(2,3)
- This equals 5 6 % of the total anthropogenic CO₂ emissions^(2,3)
- Focus of i³upgrade:

Reduction of the CO₂ impact of the integrated steel works through hydrogen-intensified syntheses

2) A review of thermochemical processes and technologies to use steelworks off-gases, W. Uribe-Soto et al., Renewable and Sustainable Energy Reviews 74 (2017), pp. 809-823 Slide 3 3) A. Hasanbeigi, 2017, https://www.globalefficiencyintel.com/new-blog/2017/nfographic-steel-industry-energy-emissions

Friedrich-Alexander-University Erlangen-Nürnberg • Chair of Energy Process Engineering • Prof. Dr.-Ing. Jürgen Karl

www.evt.tf.fau.de • www.i3upgrade.eu

Project objective i³upgrade (1)

Friedrich-Alexander-University Erlangen-Nürnberg • Chair of Energy Process Engineering • Prof. Dr.-Ing. Jürgen Karl

European

i³upgrade

Project objective i³upgrade (2)

- Intelligent process control strategy for dynamic operation with integrated dispatcher tool
 - Approach with three control levels, from technical to economic level

Triadich Alexander Heisenster Triansen Nö

Slide 5

Friedrich-Alexander-University Erlangen-Nürnberg • Chair of Energy Process Engineering • Prof. Dr.-Ing. Jürgen Karl

i³upgrade

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG

TECHNISCHE FAKULTÄT

TECHNISCHE FAKULTÄT

GŁOWNY

INSTYTUT GORNICTWA

STEP AHEAD

Research Fund

or Coal & Steel

voestalpine

European

Commission

metallurgical competence center

Consortium of i³upgrade

- Term: 1st June 2018 to 30th November 2021; 42 months
- Total budget: 3.3 MM €
- Project administration: European Commission
- Funding: Research Fund for Coal and Steel (RFCS) (Grant Agreement Nr. 800659)

Air Liquide

Sant'Anna

- Consortium: eight European partners
- Coordinator: FAU Erlangen-Nürnberg

Friedrich-Alexander-University Erlangen-Nürnberg • Chair of Energy Process Engineering • Prof. Dr.-Ing. Jürgen Karl

www.evt.tf.fau.de • www.i3upgrade.eu

RESEARCH & TECHNOLOGY

CERTH

HELLAS

Fundamentals

coal

coke plant

esearch Fund

By-product gases from the steel industry

- 3 process steps with energy and carbon rich by-product gases
 - Production of coke in coking plant \rightarrow coke oven gas (COG); max. 65 000 m_N³/h
 - Production of pig iron in blast furnace \rightarrow blast furnace gas (BFG); max. 800 000 m_N³/h
 - Production of steel in converter → converter gas (BOFG / CG); max. 75 000 m_N³/h
 - BFG and BOFG contain high shares of carbonaceous species
 - \rightarrow can serve as carbon sources for hydrogen-intensified syntheses

blast furnace			[vol%] ⁽⁴⁾	N ₂	CO ₂	CO	CH ₄	H ₂	C _n H _m	
	. –		COG	3.8	3.2	4.6	21.4	48.9	1.9	3
			BFG	51.0	21.0	23.0	-	4.5	-	
		*	BOFG / CG	15.5	17.2	60.9	0.1	4.3	-	
converter										Rese
								****		Research

(4) Unweighted mean values: R. Remus et al., Best Available Techniques (BAT) Reference Document for Iron and Steel Production, 2013.

European

CHNISCHE FAKULTÄT

Methanation - Reaction system and main challenge

- Reaction system containing CO and CO₂ methanation and water-gas-shift reaction
 - Formation of solid carbon possible (Boudouard equation)

Friedrich-Alexander-University Erlangen-Nürnberg • Chair of Energy Process Engineering • Prof. Dr.-Ing. Jürgen Karl

Experimental setup – Structured fixed-bed reactor

- Motivation i³upgrade Fundamentals Experimental Conclusion
- Minimizing the radial heat conductance length in fixed-bed (limiting factor causing hot-spots)
- Alternating reaction zones and heat sinks
- Heat pipes for reactor cooling

- Block of stainless steel with drillings for
 - 9 reaction channels filled with commercial catalyst
 - 16 drillings for water heat pipes for heat dissipation
 - 12 pre-heating channels
 - Gas inlet, outlet and redirection
- Electrical heating especially for start-up by heating cartridges
- Cooling of heat pipe condenser zones by compressed air

Friedrich-Alexander-University Erlangen-Nürnberg • Chair of Energy Process Engineering • Prof. Dr.-Ing. Jürgen Karl

Fundamentals

Heat dissipation with heat pipes

- Passive component for heat dissipation
 - Transport of high power densities over long distances with low temperature difference
 - Principle: Transmission of the enthalpy of vaporization between the heat source and the heat sink in a closed two-phase system
 - Liquid backflow usually driven by capillary forces

Figure source: Neubert, M., Hauser, A., Pourhossein, B., Dillig, M., & Karl, J. (2018). Experimental evaluation of a heat pipe cooled structured reactor as part of a two-stage catalytic methanation process in power-to-gas applications. *Applied energy*, 229, 289-298.

Friedrich-Alexander-University Erlangen-Nürnberg • Chair of Energy Process Engineering • Prof. Dr.-Ing. Jürgen Karl

www.evt.tf.fau.de • www.i3upgrade.eu

European

telligent integrated industries

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG TECHNISCHE FAKULTÄT

Test rig and performed experiments

Test rig

- Two stage methanation concept
- Intermediate water sequestration
- Pressures up to 5 bar
- Commercial Ni/Al₂O₃ catalyst with high Ni loading (~ 50 wt.-%)
- Gas analyser for permanent gases

Performed experiments

Steady-state methanation of BFG and BOFG with different

- Syngas powers / volume flow rates
- Stoichiometric ratios

Dynamic methanation of BFG and BOFG by step attempts

- Up to ± 20 % in syngas power / volume flow rate
- Over- to sub-stoichiometric regime

- Maximum temperature can be limited below the catalyst limit
- T_{max} ~150 K lower than expectable adiabatic synthesis temperature
- Dynamic adaption of cooling power to the different operating points necessary

Slide 12

European

TECHNISCHE FAKULTÄT

Product gas composition of BOFG methanation

Gas compositions after the 1st and 2nd methanation stage for different steady-state syngas powers (synthetic BOFG, σ_{H2} = 1.04, p = 4 bar)

- Full CO_x conversion after two-stage process with intermediate H2O sequestration
- Constant product gas quality after two-stage process over a wide syngas power range
- Significant amount of N₂ (~31 vol.-%) in the product gas

Slide 13

ntelligent integrated industries

Yield and conversion of dynamic BFG methanation

- Full methane yield after two-stage methanation, $X_{H2} \approx 95$ % (over-stoichiometric methanation)
- Slight shift of conversion from 1st to 2nd stage; kinetic limitation assumed
- Dynamic experiments: no influence of step width and cycle time on Y_{CH4,COx} and X_{H2}

Slide 14

Friedrich-Alexander-University Erlangen-Nürnberg • Chair of Energy Process Engineering • Prof. Dr.-Ing. Jürgen Karl

ECHNISCHE FAKULTÄT

Temperature response during dynamic BFG methanation

- Prompt and significant jumps of the hot spot temperature (~30 K) for jumps in syngas power by 1.6 kW
- Mean temperature level (represented by heat pipe working temperature) shows sluggish response
 - \rightarrow Short-term fluctuations in syngas power require no adaption of cooling capacity

Gas quality of product gases from BFG and BOFG methanation

Classification of product gas quality from BFG / BOFG methanation as measured and calculated N2 free (limits according to DVGW G260)

Measured gas compositions

- Good match of W_s/H_s ratio
- Not injectable to gas grid, high share of N₂

Calculated N_2 free gas compositions

- Some operating points would reach H gas quality
- Influence of H₂ dilution increases

Conclusion

Slide 17

Conclusion

otivation	•	Aim i ³ upgrade: Integration of renewable energies into the steelmaking process and
ıpgrade		thereby reduction of the CO ₂ impact of integrated steel works

- Dynamic H₂ intensified methanation with steelworks' by-product gases as carbon source
- · Results from steady-state and dynamic experiments
 - · Heat pipe cooled structured reactor is suitable for advanced temperature control
 - Constant product gas quality over a wide syngas power range (after two-stage process with intermediate H₂O sequestration)
 - Dynamic experiments:
 - > No influence of step width and cycle time on $Y_{CH4,COx}$ and X_{H2}
 - > Prompt temperature response at hot spot
 - > Sluggish response of mean temperature, dampening character of the reactor
 - Gas quality not sufficient for grid injection because of high shares of N₂

Thank you for your attention!

Friedrich-Alexander-University Erlangen-Nürnberg • Chair of Energy Process Engineering • Prof. Dr.-Ing. Jürgen Karl