Gefördert durch:

Bundesministerium für Wirtschaft und Energie

aufgrund eines Beschlusses des Deutschen Bundestages Bayerische Staatsregierung 4TH DOCTORAL **COLLOQUIUM BIOENERGY**

BIOENERGY

D0C2021

ERLANGEN-NÜRNBERG TECHNISCHE FAKULTÄT

UNIVERSITÄT

FRIEDRICH-ALEXANDER

4TH DOCTORAL COLLOQUIUM BIOENERGY, September 13th/14th, 2021

Direct catalytic methanation of biogas (DMB): From laboratory experiments to demonstration scale S. Markthaler, F. Grimm, J. Karl

Motivation:

DMB facilitates biogas upgrading to biomethane (CH₄ \geq 95%) without the separation of CH₄ from CO₂ [Conventional biomethane production: separation, e.g. by pressure swing absorption [1] (and subsequent CO_2 methanation [2])] \odot Simplified upgrading process using CO₂ for small-, medium- and large-scale biogas and waste water treatment plants Θ Methanation with high reactant CH₄ concentration is prone to catalyst deactivation due to carbon formation (Fig. 1)

Objectives:

- ► Identification of operational constraints of DMB with respect to carbon deposits
- \blacktriangleright Performance analysis of semi-commercial Ni/Al₂O₃ catalysts with varying biogas composition and pressure
- ▶ Process optimisation in terms of product gas quality, i.e. CH₄ product gas concentration
- Development of an enhanced process design for demonstration on industrial sites

Methods:

- Thermochemical analysis of carbon formation: Determining the chemical equilibrium by means of Gibbs energy minimisation using the software CEA [3]
- ► Experimental analysis of two different semi-commercial Ni/Al₂O₃ catalysts on a 1 kW fixed bed reactor (Fig. 2):
- Investigation of synthesis temperature for biogas CH_4/CO_2 ratios of 0.4 to 4 and operating pressure of 1.5 bar_{abs} and 4.5 bar_{abs}
- Examination of the susceptibility of the catalysts to form carbon

Sabatier reaction: $CO_2 + 4H_2 \leftrightarrow CH_4 + 2H_2O$

Fig. 1: Hydrogenation of CO_2 on a Ni-based catalyst with carbon formation

Ni

 CO_2

Fig. 4: Formation of solid carbon in chemical equilibrium dependent on temperature (a) as well as the critical temperature for carbon deposition T_{crit} dependent on pressure p and the biogas CH_4/CO_2 ratio (b)

 \triangleright Carbon deposits above the critical temperature T_{crit} (Fig. 4a) which increases with increasing pressure and decreasing reactant CH_4 concentration (Fig. 4b) as well as higher steam content (data not shown)

Outlook:

- ► The two-stage design will be transferred to a 20 kW demonstration plant (Fig. 7) which will test DMB at industrial sites (biogas and waste water treatment plant [5])
- \blacktriangleright Data obtained from T_{crit} analysis will be used for process optimisation: High peak temperature improves process limiting reaction kinetics while $T < T_{crit}$ prevents carbon formation

- Higher CH_4/CO_2 and lower pressure reduces the heat released during exothermic methanation reaction (Fig. 5)
- ► A fixed bed with CAT1 features higher activity and robustness against carbon formation (data not shown)

Fig. 6: Dry gas-phase species concentration y_i dependent on the biogas CH_4/CO_2 ratio (a) as well as the reactant and product gas concentrations for a biogas CH4/CO2 ratio of 1.5 at two different pressure levels (b) $[H_2/CO_2 = 4;$ Reactant steam content $y_{H2O} = 18$ vol.-%; Catalyst = CAT1]

- The two-stage process achieves almost constant product gas quality irrespective of the biogas composition (Fig. 6a)
- \triangleright DMB operation at elevated pressure achieves product gas CH₄ concentrations of up to 93 vol.-% after the 2nd stage (Fig. 6b)

Lehrstuhl für Energieverfahrenstechnik Prof. Dr.-Ing. Jürgen Karl

Friedrich-Alexander Universität Erlangen-Nürnberg Fürther Straße 244f, 90429 Nürnberg, www.evt.tf.fau.de [1] Fachagentur Nachwachsende Rohstoffe e. V. (2014). Leitfaden Biogasaufbereitung und –einspeisung. [2] Sterner, M., Stadler, I., 2014. Energiespeicher - Bedarf. Integration, Springer-Verlag, Berlin Heidelberg, Technologien. [3] Gordon, S., McBride, B. J. (1996). Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications. NASA Reference Publication 1311.

[4] Neubert, M., Hauser, A., Pourhossein, B., Dillig, M., & Karl, J. (2018). Experimental evaluation of a heat pipe cooled structured reactor as part of a two-stage catalytic methanation process in power-to-gas applications. Applied Energy, 229, 289-298.

[5] Power-to-Biogas project (funding code: 03KB165A) and Kläffizient project (funding code: 03EI5421A). www.evt.tf.fau.de.

Funding:

- Experiments and steam generator: Power-to-Biogas project (funding code: 03KB165A), Federal Ministry for Economic Affairs and Energy
- 20kW methanation process without steam generator: Energie Campus Nürnberg (EnCN² Speicher A TP SP3) - Bavarian State Government

Simon Markthaler, M. Sc. Tel.: +49 (0) 911/5302-9113 E-Mail: simon.markthaler@fau.de