

BIOENERGY | DOC2021 |

4[™] DOCTORAL COLLOQUIUM BIOENERGY

4[™] DOCTORAL COLLOQUIUM BIOENERGY

Julian Nix

Reduction of nitrogen oxide emissions by means of selective non catalytic reduction in a small-scale fluidized-bed combustion-system

14[™] SEPTEMBER 2021, KARLSRUHE

Overview on this presentation

4[™] DOCTORAL COLLOQUIUM BIOENERGY

1. THE PROJECT "SmartWirbelschicht"

- Motivation and goals of the project

2. INTEGRATION OF SNCR

- experimental / simulative approach and results

3. CONCLUSION AND OUTLOOK

4[™] DOCTORAL COLLOQUIUM BIOENERGY

Title of the Doctoral Project:	"SmartWirbelschicht"	
Doctoral Student:	Julian Nix	
University:	Friedrich-Alexander University Erlangen-Nürnberg	
University Supervisor:	Prof. DrIng. Jürgen Karl	
Funding :	BMEL, FNR	Bundesministerium für Ernährung und Landwirtschaft
Duration:	06/2019 - 05/2022	

Motivation and goals of the project "SmartWirbelschicht"

4[™] DOCTORAL COLLOQUIUM BIOENERGY

MOTIVATION – A look back on previous work at EVT

Development of a micro CHP-system combining fluidized bed combustion with a Stirling engine:

- ✓ Wide fuel range
- Prevention of slagging
- Low emissions (CO & dust
 with woody fuels)
- Air pre-heating with
 double-walled cyclone →
 increase of electrical
 efficiency

Upscale and field test operation of a pilot-plant

- Continous operation with several fuels (i.a. waste wood, sewage sludge)
- Detailed investigation of operation strategies and their effect on emissions

Fuels with high nitrogen content e.g. haypellets require futher reduction measures

Motivation and goals of the project "SmartWirbelschicht"

4[™] DOCTORAL COLLOQUIUM BIOENERGY

MOTIVATION – fields of application (new: besides CHP)

Motivation and goals of the project "SmartWirbelschicht"

MAIN GOALS

Identification of the "ideal application" and acquisition of future partners

- Economical- and thermodynamical evaluation of different application scenarios
- Evaluation with current customer needs/data
- Techno-economical analysis of future market potentials

Better understanding of NO_x-formation and modification of the lab system

Particle resolved simulation of fuel conversion with CPFD-software Barracuda-VR

m

eta Energieberatung

- Gas-phase reactions including NO_x-reduction by SNCR in ANSYS Fluent
- Experimental demonstration of SNCR
- Detailed emission measurements in full- and partial-load operation

BIOENERGY DOC2021

4[™] DOCTORAL COLLOQUIUM BIOENERGY

Why is SNCR the option?

Background CHP-Operation:

fluidized-bed

Electric efficiency of the Stirling-engine strongly depends on the heat being released inside the fluidized bed

heater head of Stirling

primary air-flow

4[™] DOCTORAL COLLOQUIUM BIOENERGY

Stoichiometric operation encourages non-ideal mixing of air and fuel and shifts heat-release towards the freeboard \rightarrow air staging would even increase this effect

Reaction conditions:

 Highly turbulent flow through the cyclone might be ideal for SNCR-application

View inside the cyclone

View inside the cyclone

Theoretical background on SNCR operating conditions

Experiments by Muzio et al. 1977 - Gas phase decomposition of nitric oxide in combustion products -Effect of temperature on NO reductions with ammonia injection (excess O₂: 4%; initial NO: 300 ppm)

BIOENERGY

Investigation of NO-reduction by ammonia

(Muzio et al. 1977):

- optimum temperature: 1170–1270 K or 900-1000° C
- \triangleright reduction rate increases with β_{NH_3}
- complete NH₃-conversion up to $\beta_{NH_3} = 0.5$
- $\succ \beta_{NH_3} > 0,5$: ammonia-slip

Experimental Set-Up

BIOENERGY

Experimental Results

BIOENERGY DOC2021

4[™] DOCTORAL COLLOQUIUM BIOENERGY

- Rate of reduction R increases with stoichiometric ratio
- > NH₃-conversion > 90 % up to $\beta_{NH_3} = 0,44$
- > $\beta_{NH_3} > 0.5$ significant increase of ammonia slip
- First results show good agreement with literature
 Next steps: investigation of optimum position + T_{SNCR} by external cooling

```
Thermal input: 18 kW; λ = 1,4 – 1,6;
NO<sub>inital</sub> = 300 ppm; T<sub>SNCR</sub> = 880-970 ° C ;
@ Postition 1; 15 min average
```

Experimental Results

BIOENERGY DOC2021

Influence of injection position and temperature on reduction rate:

- Near Inlet zone: dominated by combustion, partial oxidation of NH₃
- Slight tendency towards optimum of reduction
 @ ca. 850 ° C

- Shift towards higher rates of reduction
- Clearly identifiable profile of T over R
- Optimum @ ca. T_{SNCR} = 870° C

Modelling SNCR

Influence of temperature on reduction rate:

Thermal input: 18 kW; $\lambda = 1,4$; NO_{inital} = 300 ppm; β_{NH3} =0,5

X_{NO} in ppm

300

265

225

190

150

4[™] DOCTORAL

BIOENERGY DOC2021

COLLOOUIUM BIOENERGY

 $@ T = 900^{\circ}C$

Conclusion

BIOENERGY DOC2021

Experiments:

- SNCR can effectively be used for the reduction of NOx in the small-scale fluidized-bed system
- \checkmark Highest rates of reduction were achieved with cooled cyclone \rightarrow potential for air-preheating in CHP-mode
- Optimum position + "measured" temperature range for NH₃-injection identified
- Currently running: 36h tests with several fuels (unsteady NO_x-emissions)

SNCR - Modell

✓ Qualitative description of influence of Temperature on NO-reduction and NH₃-oxidation

Challenges

- Validation of heat-transfer
- Influence of radiation on temperature measurements
- > Prediction of size of combustion-zone inside the cyclone requires consideration of the whole system

Outlook

Coupling fuel conversion + gas phase reactions

4[™] DOCTORAL COLLOQUIUM BIOENERGY

- Fuel Conversion and NO_x-formation in Barracuda VR
- Data analysis and translation in Matlab (profile-files of gas-composition, -velocity and –temperature)
- 3. Gas-phase reactions (combustion + SNCR in Ansys Fluent)

Benefits:

- Consideration of non-ideal mixing of air and fuel → better description of combustionzone inside the cyclone
- Transient effects (i.a. rising gas-bubbles) can be taken into account

BIOENERGY | DOC2021 |

4TH DOCTORAL COLLOQUIUM BIOENERGY

Contact

Julian Nix

Chair for Energy Process Engineering

FAU Erlangen-Nürnberg

Fürther Str. 244f, D-90429 Nürnberg

Phone: +49 911 5302 9049

Email: julian.nix@fau.de

Karlsruher Institut für Technologie

Kaiserstraße 12 D-76131 Karlsruhe Tel.: +49 721 608-0 Fax: +49 721 608-44290 **E-Mail: info@kit.edu**