

BIOENERGY | DOC2021 |

4TH DOCTORAL COLLOQUIUM BIOENERGY

4[™] DOCTORAL COLLOQUIUM BIOENERGY

M. Sc. Christian Wondra

Determination of flammability limits and laminar flame velocity of biogenic synthesis gases

14[™] SEPTEMBER 2021, KARLSRUHE

Overview on this presentation

4[™] DOCTORAL COLLOQUIUM BIOENERGY

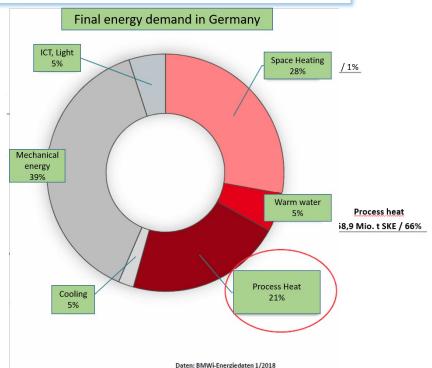
1. Motivation

2. The Project "KonditorGas"

3. Laminar flame velocity and flammability limit

4. Construction of the test rig

Project KonditorGas - Overview

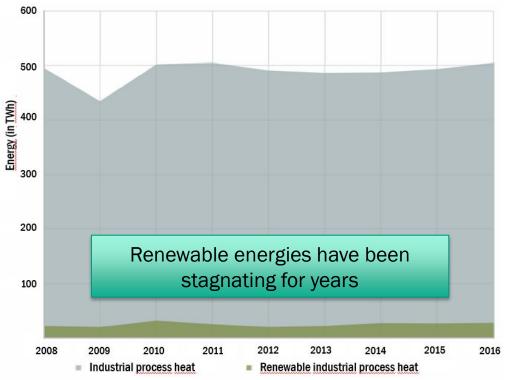

Title of the Doctoral Project:	"KonditorGas"				
Doctoral Student:	Christian Wondra				
Project Partners:	DBFZ Leipzig DBFZ E-Flox GmbH @eflox TesTneT GmbH				
University:	Friedrich-Alexander University Erlangen-Nürnberg				
University Supervisor:	Prof. DrIng. Jürgen Karl				
Funding :	Bundesministerium für Wirtschaft und Energie				
Duration:	09/2020 - 08/2023				

Motivation – Industrial Process Heat

III Handelsblatt

Industrie: Der heimliche Energiefresser: Grüne Lösungen für Prozesswärme gesucht

"Wenn wir wirklich wollen, dass die Energiewende funktioniert, müssen wir die Industrie auf CO2-neutrale Prozesswärme umstellen", sagt ... 12.08.2020


BIOENERGY DOC2021

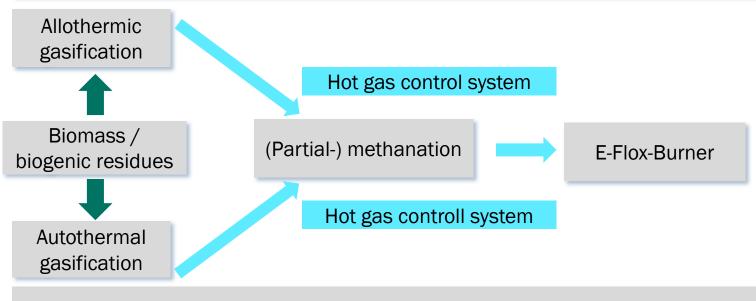
- Process heat largest final energy consumer in industry
- 1/5 final energy consumption in
 Germany is required for process heat
- Renewable concepts important for achieving climate targets
- CO₂-tax since 2021
 → economic factor

Motivation – Energy sources for process heat

4[™] DOCTORAL COLLOQUIUM BIOENERGY

- Renewables contribute only 5 % to supply
- Main energy source is (natural) gas

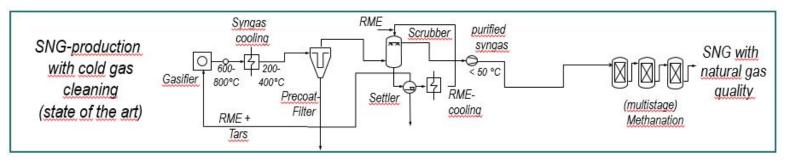
- Substitution of natural gas by biogenic synthesis gases from the gasification of biomass
- Adaptation of the process chains for industry possible with little effort


Hamburg Institut, Kurzgutachten zur Dekarbonisierung der Prozesswärme, 2018.

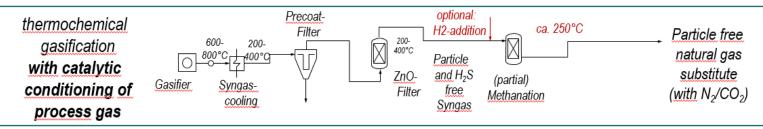
Aim of the project: Complete process chain for direct utilization of biogenic synthesis gases

4[™] DOCTORAL COLLOQUIUM BIOENERGY

Semi-industrial scale by means of a 100 kW Heat-Pipe-Reformer


Proof-Of-Concept at a wood gasisfier site with real gas

SNG production: State of the art vs. Catalytic conditioning



4[™] DOCTORAL COLLOQUIUM BIOENERGY

State of the art: SNG with natural gas quality

Aim of the project: Simplification of gas purification and methanation, resulting in technical and economic simplification of the process chain

Gasification: Different gas quality and inert gas content

4[™] DOCTORAL COLLOQUIUM BIOENERGY

Allothermal process chain:

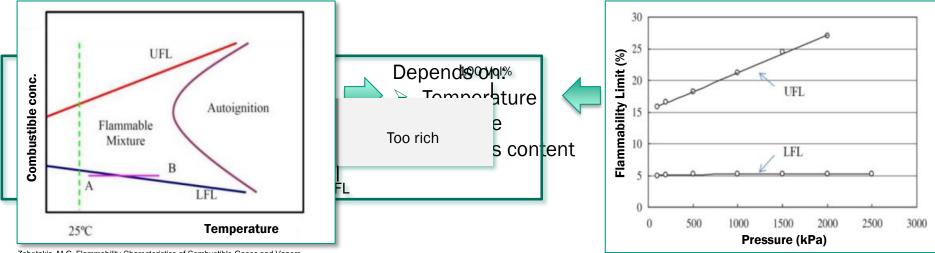
- 5 kW fluidized bed gasifier
- Steam as gasification medium

Autothermal process chain:

- 10 kW fixed bed gasifier (Spanner RE)
- > Air as gasification medium

H_2	CO	CO ₂	CH ₄	Tars
Vol %	Vol %	Vol %	Vol %	mg/m ³
47,4	14,6	27,5	10,5	5000

H ₂	CO	CO ₂	CH ₄	N ₂	Tars
Vol %	Vol %	Vol %	Vol %	Vol %	mg/m ³
19,5	22,6	11,1	1,9	43,7	193

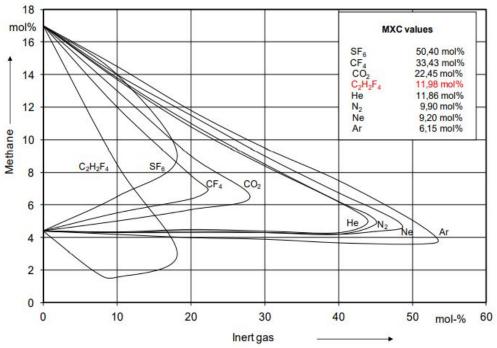


Due to the simplification of the process, the fuel gas contains higher concentrations of inert gases, which influence parameters such as flammability limits and flame velocities.

Theoretical background – Flammability limit of gas mixtures

- Describes the flammability of a gas mixture in air
- Important safety characteristic
- Lower (LFL) and upper (UFL) flammability limit

Zabetakis, M.G, Flammability Characteristics of Combustible Gases and Vapors

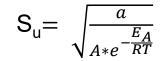

Flamability limit – Influence of inert/neutral gas

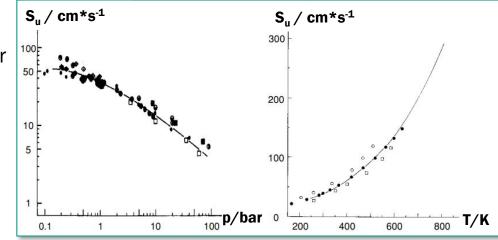
4[™] DOCTORAL COLLOQUIUM BIOENERGY

- Considerable effect on chemical reaction mechanism
- > Dilution of the fuel gas mixture
- Inert gas with high thermal capacity reduce the flame temperature
- Also the thermal conductivity is a factor

With increasing inert gas content the range between LFL and UFL is reduced

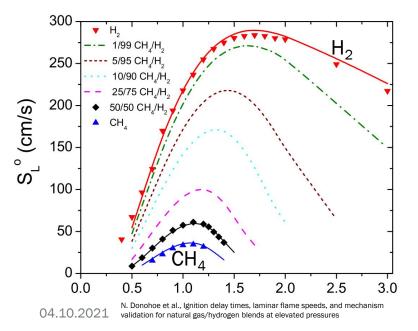
CHEMSAFE®, Database of evaluated safety characteristics

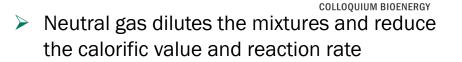

Theoretical background – Laminar flame velocity


BIOENERGY

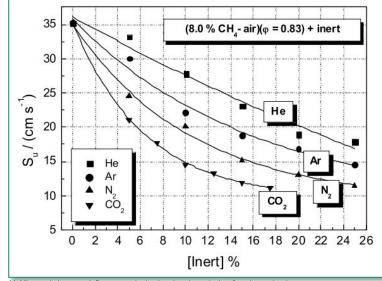
4[™] DOCTORAL COLLOQUIUM BIOENERGY

- Corresponds to the propagation velocity of the flame front in the direction of the fuel/air mixture flowing after it
- Flame speed describes reactivity of the fuel gas
- Depends on the fuel/air mixture
- Defined by Zeldovich et al. as



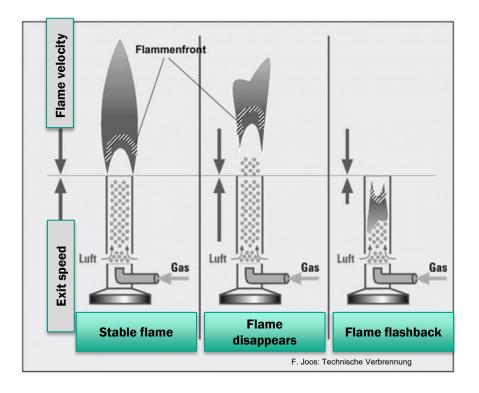

Warnatz et al., Combustion

> Depending on temperature and pressure


Laminar flame velocity – Influence of gas composition

- H₂ has a considerably higher laminar flame velocity
- Depends on fuel-air equivalence ratio

Flame velocity decreases with higher neutral gas content


M. Mitu et al., Inert gas influence on the laminar burning velocity of methane-air mixtures

BIOENERGY DOC2021

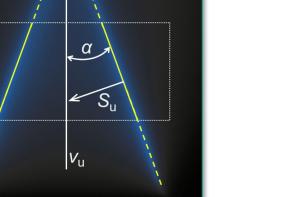
4[™] DOCTORAL

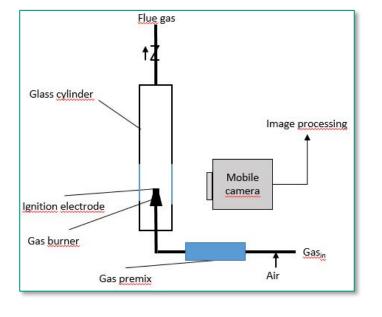
Laminar flame velocity – Important parameter for burner technology

- For a stable flame, the exit speed of the fuel/air mixture must be equal to the flame velocity
- Safety risks if the exit speed is too low

Flame flashback

Flame velocity too low


no continuous flame and bad performance of the burning system

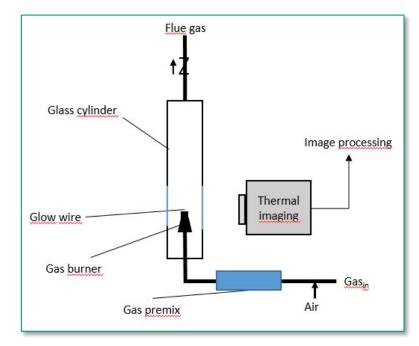

Test rig – Determination of the laminar flame velocity

 Optical measuring methode via angle methode

 $S_u = v_u * \sin \alpha$

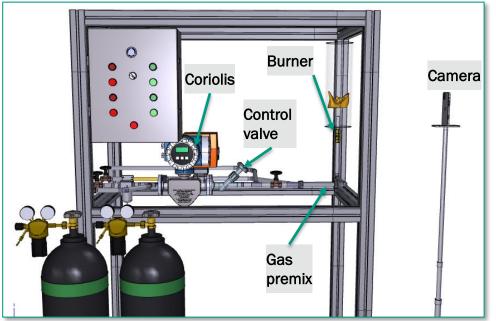
S. Richter, DLR-Institut für Verbrennungstechnik.

- Image processing with MatLab
- Mobile phone is used as a camera


DOC2021 4[™] DOCTORAL COLLOQUIUM BIOENERGY

BIOENERGY

Test rig – Determination of the flammability limit


- Integration in the same test rig
- Acording to DIN Norm there are two different methods
- → Both methods are not continous
- > A modified tube methode is used
- Premixed gas flows over permanent ignition source
- → Flame formation or temperature changes are recorded
- → Validation of the new measurement methode with methane

Construction of the test rig

BIOENERGY DOC2021

- The syngas volume flow is controlled by a coriolis sensor proportional valve combination
- The pipe section and measuring instruments are trace heated and insulated to prevent tar condensation (T > 150 ° C)
- For safety reasons N₂ can evacuate the whole test rig

Summary and outlook

- Industrial process heat needs novel concepts to substitute fossil fuels
- Catalytically conditioned Syngas can be substitute natural gas and be used in modified burner systems
- The flame velocity is a decisive factor for the design and performance of the burner
- The higher inert gas and hydrogen content of the syngas can be influence the flame velocity as well as the flammability limits
- The test rig is used to determine the parameters for real wood gases and to investigate correlations with the performance of the burner

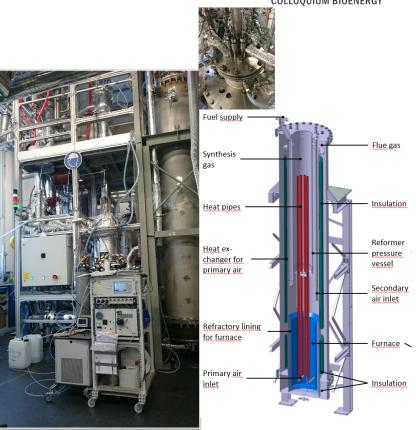
BIOENERGY | DOC2021 |

4TH DOCTORAL COLLOQUIUM BIOENERGY

Contact

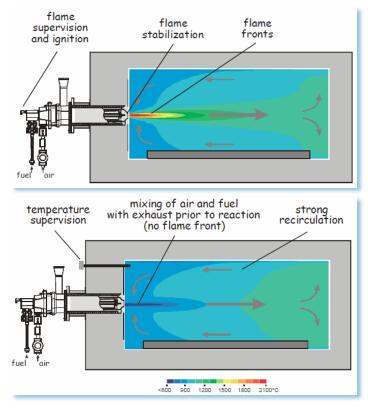
Christian Wondra Chair for Energy Process Engineering FAU Erlangen-Nürnberg Fürther Str. 244f, D-90429 Nürnberg Phone: +49 911 5302 9399 Email: christian.wondra@fau.de

Karlsruher Institut für Technologie


Kaiserstraße 12 D-76131 Karlsruhe Tel.: +49 721 608-0 Fax: +49 721 608-44290 **E-Mail: info@kit.edu**

Proof of concept – Allothermic steam gasification

BIOENERGY DOC2021


- > 100 kW Heat-Pipe-Reformer
- Construction of the whole process chain at EVT
- Heat input into the reformer through 8 high-temperature sodium heat pipes
- Demonstration on a semi-industrial scale

FLOX Technology – FlameLess OXidation

4[™] DOCTORAL COLLOQUIUM BIOENERGY

Advantages FLOX-Technology:

- 1. Oxidation in the combustion chamber volume instead of at the flame boundary
- 2. Uniform temperature distribution
- 3. Low thermal NOx
- 4. Excess air can be reduced
- 5. Fuel composition can vary
- 6. Weak gases can be used

Challenges of the FLOX-Technology:

- > Only works at high temperatures (>800 $^{\circ}$ C)
- Flame operation necessary when starting
- Until now natural gas is necessary for flame operation