• Navigation überspringen
  • Zur Navigation
  • Zum Seitenende
Organisationsmenü öffnen Organisationsmenü schließen
Friedrich-Alexander-Universität Lehrstuhl für Energieverfahrenstechnik
  • FAUZur zentralen FAU Website
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Chemie- und Bioingenieurwesen
  • en
  • de
  • Mein Campus
  • UnivIS
  • FAU-Lageplan
  1. Friedrich-Alexander-Universität
  2. Technische Fakultät
  3. Department Chemie- und Bioingenieurwesen
Friedrich-Alexander-Universität Lehrstuhl für Energieverfahrenstechnik
Menu Menu schließen
  • Lehrstuhl
    • MitarbeiterInnen
    • Raumbelegung
    • Stellenangebote
    Portal Lehrstuhl
  • Neuigkeiten
    • Aktuelles
    • Veranstaltungen
    • Pressemitteilungen
    • Promotionsgalerie
    Portal Neuigkeiten
  • Studium und Lehre
    • Lehrveranstaltungen
    • Aktuelle Abschlussarbeiten
    • Studiengang Energietechnik
    Portal Studium und Lehre
  • Forschung
    • Schwerpunkte
      • Second Generation Fuels & Brennstoffzellen
      • Verbrennung & Vergasung von Biomasse
      • Energiesysteme & Energiewirtschaft
    • Forschungsnetzwerke
    • Ausstattung
    • Publikationen
    Portal Forschung
  • Kontakt
    • Anfahrtsbeschreibung
    Portal Kontakt
  1. Startseite
  2. Forschung
  3. Schwerpunkte
  4. Verbrennung & Vergasung von Biomasse
  5. CampusFES-Projekt PlasmaGas

CampusFES-Projekt PlasmaGas

Bereichsnavigation: Forschung
  • Schwerpunkte
    • Schwerpunkte Prof. Karl
    • Verbrennung & Vergasung von Biomasse
      • Ascheschmelzverhalten
      • BMEL-Projekt SmartWirbelschicht
      • BMEL-Projekt: EmissionPredictor
      • BMWi-Projekt: ANICA
      • BMWi-Projekt: BioWasteStirling
      • BMWi-Projekt: FlexNOx
      • BMWi-Projekt: FuelBand
      • BMWi-Projekt: FuelBand2
      • CampusFES-Projekt PlasmaGas
      • DFG-Projekt: KoksAgglomeration
      • EnCN – Teilprojekt Spitzenlastfähige Hochtemperaturspeicher
      • EU-Projekt SolBio-Rev
      • E|Home-Center: HomeORC
      • Heatpipe Reformer Technologie
      • Kinetik der Biomassevergasung
      • Stirlingmotor
      • Wasserstoff aus Biomasse
      • ZIM-Projekt Pyrolyseofen
    • Second Generation Fuels & Brennstoffzellen
      • BMEL-Projekt: FlexBiomethane
      • BMWi-Projekt: Ash-to-Gas
      • BMWi-Projekt: BiogasGoesHydrogen
      • BMWi-Projekt: FlexSOFC
      • BMWi-Projekt: IntenseMethane
      • BMWi-Projekt: KonditorGas
      • BMWi-Projekt: ORBIT
      • BMWi-Projekt: ORBIT II
      • BMWi-Projekt: Power-to-Biogas
      • CO2freeSNG
      • CO2freeSNG 2.0
      • EnCN – Teilprojekt Große Speicher
      • EU-Projekt CarbonNeutralLNG
      • EU-Projekt i³upgrade
      • Lastflexible Hochtemperatur-Elektrolyse
      • Regenerativer Wasserstoff im Erdgasnetz
    • Energiesysteme & Energiewirtschaft
      • BMWi-Projekt: ESM-Regio
      • BMWi-Projekt: Kläffizient
      • BMWK-Projekt ProKläR-mission
      • BMWK-Projekt SyntheseREADY
      • CARINA
      • EnCN Teilprojekt 1.1: Grundlastfähige Speichersysteme mit Niedertemperatur-Speichern
      • SustainableGas
    • Schwerpunkte Prof. Herkendell
      • BMBF-Projekt: MultiKulti
      • BMWi-Projekt Hy2BioMethane
      • EU-Projekt: BIOMETHAVERSE
  • Publikationen
    • Zeitschriften
    • Vorträge und Tagungsbeiträge
    • Klimawende – Eine Energiebilanz für morgen
    • Bücher und Buchbeiträge
    • FAU Strompreisstudie 2015
    • FAU Strompreisstudie 2019
    • Abschlussarbeiten
  • Ausstattung
    • Technische Ausstattung
    • Versuchsanlagen
      • 100 kW Heatpipe Reformer
      • 100 kW Wirbelschichtfeuerung
      • 100 kWh Pilot-Carbonatspeicher
      • 200 kW Vertikalrostfeuerung
      • 6 kWh Pilot-Carbonatspeicher
      • Carnot-Batterie
      • Gasregelstrecke mit Reaktorprüfstand
      • Hochdruck-Rührfermenter
      • Katalytische Methanisierung
      • Katalytische Methanisierung
      • Katalytische Methanisierung: ADDmeth
      • Kleinvergaser
      • Laborwäscher
      • Laborwirbelschicht mit Wägeplattform
      • Mikro-KWK-Pilotanlage
      • Modulteststand SOFC Stack
      • ORBIT-Rieselbettreaktor
      • Permeations-Prüfstand
      • Plasmavergaser
      • Rieselbett-Fermenter
      • Rührkessel-Fermenter
      • SOFC-SOEC Teststand
      • Steam Reformer
      • Stirlingmotor
      • Teststand für Heatpipes im industriellen Maßstab
      • Teststand für Niedertemperatur-Heatpipes
      • Teststand für planare Heatpipes
    • Dienstleistungen
  • Forschungsnetzwerke

CampusFES-Projekt PlasmaGas

Industrielles Forschungsprojekt „PlasmaGas“ – Plasma-gestützte Biomassevergasung

Im Forschungsprojekt „PlasmaGas“ wird die Biomassevergasung mit und ohne Nichtgleichgewichtsplasmen (non-thermal plasma) untersucht, um Synthesegase (CO & H2) effizient und ohne aufwendige Reinigungsprozesse aus Biomasse herzustellen.

Förderkennzeichen: CampusFES-PlasmaGas

Laufzeit: 01.07.2014 – 30.09.2017

Projektträger

CampusFES

CampusFES

gefördert durch

Siemens Logo

Siemens AG

Projektpartner

Logo Lehrstuhl für Technische Thermodynamik

Lehrstuhl für Technische Thermodynamik, FAU Erlangen-Nürnberg

 

Siemens Logo

Siemens AG

Die allotherme Vergasung ist eine Schlüsseltechnologie für die Herstellung von Wasserstoff, SNG und Chemikalien aus Biomasse in der globalen Energiewende. Im Vergleich zur konventionellen thermischen Vergasung ermöglicht die plasma-gestützte Biomassevergasung eine verbesserte Reaktionskinetik durch die Bereitstellung freier Radikale und Teilchen hoher Temperatur.

Droptube-Reaktor Skizze und Aufnahmen
Skizze und Aufnahmen des Droptube-Reaktors

 

Besondere vielversprechend sind thermodynamische Nichtgleichgewichtsplasmen, in denen sich kein thermisches Gleichgewicht einstellt. Hier werden die leichten elektrisch geladenen Elektronen durch ein elektrisches Feld auf mittlere Energien aufgeheizt, die weit über denen der neutralen Gasmoleküle liegen, deren Gastemperatur sich je nach Betriebsbedingungen des NTP nur um einige 10 bis 1000 K erhöht.

Plasma-Filamente Simulation und Aufnahmen
Plasma-Filamente: Simulation und reale Aufnahmen

Die dynamische Flexibilität des Plasmagenerators bietet sich für die Nutzung von Überschussstrom aus erneuerbaren Quellen an. So kann fluktuierende elektrische Energie die Reaktionsenthalpie endothermer Vergasungsreaktionen bei der allothermen Wasserdampfvergasung bereitstellen. Elektrische Energie wird in chemisch gebundene Energie umgewandelt und im Synthesegas oder – über nachfolgende Synthesen – flüssigen oder gasförmigen Sekundärenergieträgern gespeichert.
Untersucht wird der Einfluss der Plasmen auf die Reaktionskinetik der Biomassevergasung.

 

Ansprechpartner:

Müller, Dominik

Dr.-Ing. Dominik Müller

Department Chemie- und Bioingenieurwesen (CBI)
Lehrstuhl für Energieverfahrenstechnik

  • Telefon: 09115302-99024
  • E-Mail: dominik.mueller@fau.de
Friedrich-Alexander-Universität Erlangen-Nürnberg
Lehrstuhl für Energieverfahrenstechnik

Fürther Straße 244f
90429 Nürnberg
  • Impressum
  • Datenschutz
  • Barrierefreiheit
Nach oben